

Última modificación:

820757 - MNTCM - Métodos Numéricos en Transferencia de Calor y Masa (VERSIÓN DE TRABAJO)

Unidad responsable: 820 - EUETIB - Escuela Universitaria de Ingeniería Técnica Industrial de Barcelona

Unidad que imparte: 724 - MMT - Departamento de Máquinas y Motores Térmicos

Curso: 2014

Titulación: MÁSTER UNIVERSITARIO EN INGENIERÍA DE LA ENERGÍA (Plan 2013). (Unidad docente Optativa)

MÁSTER UNIVERSITARIO EN SISTEMAS ENERGÉTICOS SOSTENIBLES (Plan 2012). (Unidad docente

Optativa)

Créditos ECTS: 5 Idiomas docencia: Catalán, Castellano, Inglés

Profesorado

Responsable: Oriol Lehmkuhl Barba

Otros: Carlos David Pérez Segarra, Assensi Oliva Llena.

Competencias de la titulación a las cuales contribuye la asignatura

Específicas:

CEMT-5. Aplicar criterios técnicos y económicos en la selección del equipo térmico más adecuado para una determinada aplicación. Dimensionar equipos e instalaciones térmicas. Reconocer y valorar las aplicaciones tecnológicas más novedosas en el ámbito de la producción, transporte, distribución, almacenaje y uso de la energía térmica.

Objetivos de aprendizaje de la asignatura

Adquirir una formación básica en la resolución numérica de las ecuaciones gobernantes en dinámica de fluidos y transferencia de calor y masa.

Adquirir una primera experiencia práctica en la programación, verificación y validación de códigos de CFD & HT (Computational Fluid Dynamics and Heat Transfer).

Familiarizarse con el uso de códigos CFD & HT y adquirir la capacidad de juzgar de forma crítica su calidad (verificación de las soluciones numéricas y validación de las formulaciones matemáticas utilizadas).

Resultados del aprendizaje al finalizar la asignatura, el / la estudiante:

Consolidación de las formulaciones matemáticas básicas de fenómenos de dinámica de fluidos y transferencia de calor y masa.

Conocimiento de diferentes metodologías de integración numérica de las ecuaciones de Navier-Stokes.

Introducción a la resolución de flujos turbulentos en base a metodologías de tipo RANS, LES y DNS.

Aplicación de técnicas de verificación de códigos, verificación de soluciones numéricas y validación de formulaciones matemáticas.

Última modificación:

820757 - MNTCM - Métodos Numéricos en Transferencia de Calor y Masa (VERSIÓN DE TRABAJO) Horas totales de dedicación del estudiantado

Dedicación total: 125h	Horas grupo grande:	0h	0.00%
	Horas grupo mediano:	0h	0.00%
	Horas grupo pequeño:	30h	24.00%
	Horas actividades dirigidas:	15h	12.00%
	Horas aprendizaje autónomo:	80h	64.00%

Contenidos

Introducción a los métodos numéricos en dinámica de fluidos y transmisión de calor y masa

Dedicación: 23h 30m

Grupo pequeño/Laboratorio: 6h Actividades dirigidas: 1h 30m Aprendizaje autónomo: 16h

Descripción:

Planteamiento general de la problemática implicada en la integración de las ecuaciones propias de la dinámica de fluidos y de la transferencia de calor y masa. Comentarios generales de las diferentes metodologías de integración de las ecuaciones (diferencias finitas, volúmenes finitos, elementos finitos, métodos espectrales, etc.).

Resolución de la ecuación de la transferencia de calor por conducción de calor en dominios irregulares. Análisis permanente y transitorio.

Dedicación: 24h 30m

Grupo pequeño/Laboratorio: 6h Actividades dirigidas: 2h 30m Aprendizaje autónomo: 16h

Descripción:

Extensión de la metodología explicada en los cursos básicos de transferencia de calor y masa, basada en técnicas de volúmenes finitos y mallas de discretización estructuradas, ortogonales y adaptables al dominio. En este tema se introducirán técnicas de blocking-off para el tratamiento de geometrías complejas así como mallas no estructuradas con volúmenes finitos no ortogonales y de formas diversas (eg tetraedros). Se explicaron las técnicas de tratamiento de datos y las tablas de conectividad.

En esta etapa la resolución de los sistemas de ecuaciones de discretización se realizará con los métodos ya conocidos por los estudiantes de cursos anteriores (Gauss-Seidel, line-by-line, técnicas de sub y sobrerrelaxació).

Resolución de ecuaciones de tipo conveccióndifusión. Dedicación: 25h 30m

Grupo pequeño/Laboratorio: 6h Actividades dirigidas: 3h 30m Aprendizaje autónomo: 16h

Descripción:

A diferencia de las ecuaciones planteadas en el tema anterior, aquí se presenta la forma genérica de las ecuaciones de transporte con los términos convectivos. Se explican las diferentes técnicas de integración de la ecuación y los problemas de precisión (difusión numérica o falsa difusión) y / o convergencia (estabilidad) que pueden resultar según el esquema que se utilice. Se plantean diferentes problemas benchmark con mapas de velocidades dados (eg flujo uniforme inclinado respecto de las coordenadas, Smith-Hutton problem, etc.).

Actividades vinculadas:

Lecture

Practical class

Practical work

Reduced scope of work

Técnicas de verificación de códigos y de las soluciones numéricas y revisión de los solvers más adecuados.

Dedicación: 26h

Grupo pequeño/Laboratorio: 6h Actividades dirigidas: 4h Aprendizaje autónomo: 16h

Descripción:

Este tema aborda dos aspectos fundamentales en la metodología de resolución numérica. El primero está relacionado con la verificación de código y verificación de soluciones numéricas. El segundo a las técnicas de resolución de grandes sistemas de ecuaciones algebraicas.

Referente al primer punto, se presentan diferentes técnicas de verificación de códigos, como puede ser comparativas con casos simplificados pero de solución analítica conocida, verificación de balances globales de masa, momentum y / o energía, creación de soluciones numéricas ad hoc (el conocido como a MMS o Method of Manufactured Solutions). Una vez el código está suficientemente verificado, se explican técnicas para asegurar la calidad de la solución numérica (ie los resultados obtenidos no pueden estar condicionados a la malla de discretizació generada o los parámetros numéricos utilizados o el número de cifras significativas (precisión-utilizadas pe el ordenador).

En una segunda parte se presentan solvers iterativos más eficientes que los estándar (Gauss-Seidel o el line-byline). En particular, precondicionadores por métodos de Krylov (CG, GMRES, BiCGSTAB) y métodos de tipo multimalla-multinivel. En casos 3D con dirección periódica, se comentan métodos de diagonalización de Fourier.

Resolución de las ecuaciones de Navier-Stokes

Dedicación: 25h 30m

Grupo pequeño/Laboratorio: 6h Actividades dirigidas: 3h 30m Aprendizaje autónomo: 16h

Descripción:

Se plantea la problemática de resolución de estas ecuaciones, tanto desde un punto de vista físico como numérico. Se comentan diferentes propiedades que deben conservar las ecuaciones discretitzades y cómo estas propiedades son introducidas en el tratamiento numérico. La metodología que se explica se basa en técnicas de tipo explícito y esquemas de discretización espectro-consistente. El agoritme global es de tipo fractional-step method. Se proponen diferentes casos benchmark (driven cavity, differentially cavity, backward-facing step, etc.). Este planteamiento permite al estudiante abordar situaciones de flujos turbulentos con modelos tipo DNS (Direct Numerical Simulation) y LAS (Large Eddy Simulation). Se comentan aspectos fenomenológicos relativos a la turbulencia (cascada de energía, filtrado de las ecuaciones, mapas iniciales y condiciones de contorno) y de tratamiento estadístico de datos.

Planificación de actividades

Clases de teoría Dedicación: 20h

Grupo pequeño/Laboratorio: 15h Aprendizaje autónomo: 5h

Competencias de la titulación a las que contribuye la actividad:

Clases prácticas Dedicación: 20h

Grupo pequeño/Laboratorio: 15h Aprendizaje autónomo: 5h

Competencias de la titulación a las que contribuye la actividad:

Trabajo teórico-práctico dirigido Dedicación: 17h

Actividades dirigidas: 12h Aprendizaje autónomo: 5h

Competencias de la titulación a las que contribuye la actividad:

Trabajo de alcance reducido Dedicación: 25h

Aprendizaje autónomo: 25h

Competencias de la titulación a las que contribuye la actividad:

Trabajo de amplio alcance Dedicación: 40h

Aprendizaje autónomo: 40h

Competencias de la titulación a las que contribuye la actividad:

Pruebas de conocimiento Dedicación: 3h

Actividades dirigidas: 3h

Competencias de la titulación a las que contribuye la actividad:

Bibliografía

Básica:

Incropera, Frank Paul; DeWitt, David P. Fundamentos de transferencia de calor. 4a ed. México [etc.]: Prentice Hall, cop. 1999. ISBN 9701701704.

Patankar, Suhas V. Numerical heat transfer and fluid flow. Washington: New York: Hemisphere; McGraw-Hill, cop. 1980. ISBN 0070487405.

Ferziger, Joel H; Peric, Milovan. Computational methods for fluid dynamics. 3rd, rev. ed. Berlin [etc.]: Springer, cop. 2002. ISBN 3540420746.

Versteeg, H. K; Malalasekera, W. An Introduction to computational fluid dynamics: the finite volume method. Harlow, Essex: New York: Longman Scientific & Technical; Wiley, 1995. ISBN 0470235152.

Roache, Patrick J. Fundamentals of computational fluid dynamics. Albuquerque, New Mexico: Hermosa, cop. 1998. ISBN 0913478091.

Complementaria:

Pope, S. B. Turbulent flows. Repr. with corr. Cambridge [etc.]: Cambridge University Press, 2000. ISBN 0521591252.

Bradshaw, P. An Introduction to turbulence and its measurement. Oxford; New York: Pergamon Press, 1971. ISBN 080166202.

Libby, Paul A. Introduction to turbulence. Bristol, PA: Taylor & Frances, cop. 1996. ISBN 1560321008.

Roache, Patrick J. Verification and validation in computational science and engineering. New Mexico: Hermosa Publishers, cop. 1998. ISBN 0913478083.

Shyy, W. Computational fluid dynamics with moving boundaries. Philadelphia [etc.]: Taylor & Francis, cop. 1996. ISBN 1560324589.

Otros recursos:

Material audiovisual

Material audiovisual

Transparencias, problemas propuestos que se utilizarán en clase.

Material informático

Apunts

Apuntes realizados por el profesorado de la asignatura.