Universitat Politècnica de Catalunya – Universitat de Barcelona

Màster oficial d'Enginyeria en Energia

Fitxa de descripció d'assignatura

	.	0.1 755	Codi:	33556		
Assignatura	Energia	a Solar Tèrmica	Versió:	Juliol 2009		
Tipus:	Opt	Crèdits totals ECTS:	5	Hores/setmana to	tals:	8,5
Idioma:	Català – Castellà - Anglès	Crèdits presencials Teoria:		Hores/setmana pr	resencials Teoria:	2,5
Hores/crèdit:	25	Crèdits presencials Problemes:		Hores/setmana pr	esencials Problemes:	1,0
Quadrimestre:	1r	Crèdits presencials Laboratori:		Hores/setmana pr	esencials Laboratori	1,0
Nivell:	Màster	Crèdits no presencials:		Hores/setmana no	presencials:	4,0
Coordinador	A Oliva					

Coordinador: A.Oliva

Professors: A.Oliva, I.Rodriguez, M.Soria, J.Castro, E. Velo

Horari i lloc de Horari de tutoria:

tutories: Les tutories es faran preferentment al Dept. Màquines i Motors Tèrmics, ETSEIAT.

Pre-requisits: Coneixements equivalents a haver superat el curs d'anivellament del màster.

Co-requisits:

Objectius generals:

- Descripción de los fenómenos de transferencia de calor (radiación, convección y conducción) que tienen lugar en los sistemas y equipos solares térmicos.
- Descripción de materiales utilizados en aplicaciones solares térmicas: superficies con tratamiento selectivo, materiales de acumulación por cambio de fase, superficies transparentes aislantes...
- Descripción de modelos de cálculo que permiten el diseño y optimización de los sistemas solares térmicos y de sus componentes. Descripción de software comercial y software desarrollado en el CTTC-UPC (Centro Tecnológico de Transferencia de Calor, Universidad Politécnica de Catalunya).
- Realización de prácticas en el banco de ensayo de colectores y sistemas solares térmicos del CTTC-UPC y en plantas solares térmicas en funcionamiento (sistema solar de agua caliente sanitaria de la ETSEIAT).
- Aplicaciones especiales: refrigeración por absorción utilizando la energía solar como fuente de energía. Energía solar térmica de alta temperatura (plantas solares termoeléctricas).

Objectius específics de cada tema:

Objectius transversals:

Programa de Teoria:

Se estudian diferentes componentes y sistemas utilizados en el aprovechamiento térmico de la energía solar, y se analiza su integración en aplicaciones. El temario incluye:

- Introducción, descripción general de componentes, equipos e instalaciones.
- Radiación solar, radiación disponible, radiación en materiales transparentes y opacos.
- Análisis y diseño de los componentes típicos en sistemas solares activos y pasivos: colectores, tanques de acumulación, fachadas acristaladas...
- Metodologías de ensayo y modelos de cálculo de los componentes y sistemas
- Análisis de instalaciones: regulación, control y seguimiento.
- Refrigeración por absorción utilizando la energía solar como fuente de energía
- Sistemas de energía solar de alta temperatura (plantas solares termoeléctricas).

Pràctiques de Laboratori:

Activitats No Presencials:

Càrrega	setmanal	de l'	'estudiant	en	hores:
---------	----------	-------	------------	----	--------

Tipus d'activitat / Setmana	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	Total
Teoria																
Pràctiques																
Problemes																
Activitat No presencial																
Treball individual																
Treball en grup																
Proves i exàmens																
Altres activitats																
TOTAL																

Metodologia docent:

El curso esta estructurado en tres líneas de enseñanza:

- 1. Base teórica: i) Descripción de los fenómenos de transferencia de calor (radiación, convección y conducción) que tienen lugar en los sistemas y equipos solares térmicos; ii) Descripción de materiales utilizados en aplicaciones solares térmicas: superficies con tratamiento selectivo, materiales de acumulación por cambio de fase, superficies transparentes aislantes...
- 2. Modelos de cálculo: Descripción y prácticas con modelos de cálculo que permiten el diseño y optimización de los sistemas solares térmicos y de sus componentes. Descripción de software comercial y software desarrollado en el CTTC-UPC.
- 3. Prácticas en instalaciones: Realización de prácticas en el banco de ensayo de colectores y sistemas solares térmicos del CTTC-UPC y en plantas solares térmicas en funcionamiento (sistema solar de agua caliente sanitaria de la ETSEIAT).

Bibliografia Bàsica:

- 1. Balcomb et al., Passive Solar Design Handbook, American Solar Energy Society, Inc., 1983.
- 2. J.A. Duffie, W.A. Beckman, Solar Engineering of Thermal Processes, Interscience Publication, 2nd edition, 1991.
- 3. W.A.Beckman, S.A. Klein, J. A. Duffie, Proyecto de Sistemas Térmico-Solares por el Método de las Curvas-f, W.A. Editorial Index, Madrid, 1982.
- 4. TRNSYS 15. A Transient Simulation Program. User's manual. SEL. Madison University, Wisconsin. 1999
- 5. G.Alefeld, R.Radermacher, Heat Conversion Systems, CRC Press, Boca Raton, 1994.
- 6. K.E. Herold, R. Radermacher, S.A. Klein. Absorption Chillers and Heat Pumps, CRC Press, 1996.

Bibliografia Complementària:

Criteri d'avaluació:

Cliveli ii i										
Controls parcials:	%	Exercicis/problemes:	%	Control final:	%					
No presencial:	%	Pràctiques:	%	Altres proves:	%					

Mètodes d'avaluació:

- Realización de un examen final.
- Presentación y defensa de ejercicios que incluirán problemas teóricos, evaluación de resultados numéricos y evaluación de resultados experimentales.
- Realización de un proyecto final a convenir con cada alumno.