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ABSTRACT 

Undoubtedly, the energy sector is moving towards a more renewable and 

sustainable path. This means renewable energy will increase their penetration into 

the electric power grid. Wind Energy, in particular Offshore Wind Energy, is 

becoming the leader of the renewable energy in terms of future possibilities, and 

their technology is evolving to a more controllable devices. 

Double Fed Induction Generator Wind Turbines (DFIG), also known in the industry 

as Type 3 Wind Turbines, and Fully Rated Converter-based Wind Turbines, Type 4, 

use power electronics to decouple the generator from the grid. Type 3 does this 

partially and Type 4 decouples completely the generator from the system. This 

allows variable wind speed operation and higher controllability for grid support. 

They improve the grid support provided by Fixed Wind Speed Turbines, except for 

the Fast Primary Frequency Response which is related directly with the inertia 

stored in the system. These types of wind turbines are not able to provide natural 

inertia response due to their decoupling from the grid. If we increase the 

penetration of this kind of wind turbines without giving a solution to the Fast 

Primary Frequency Response we will be lowering the Frequency Response and 

enable disturbances in the grid. 

This project proves how the Frequency control improves Frequency Response of 

the system in front of a sudden frequency drop even when the Percentage of Wind 

Energy Penetration is at the 30% level.   

We also prove how Control values of inertia constant, Droop and operational wind 

speeds affects the Frequency Response, being a fundamental step to take into 

account the operational point of the turbine depending on the working wind speed 

and the tune of the Frequency control values depending on the turbine 

characteristics. 
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RESUMEN 

Indudablemente, el sector energético se mueve hacia un futuro más renovable y 

sostenible. Eso significa que la penetración en el sistema eléctrico de energías 

renovables aumentará inevitablemente en unos años. La energía eólica, y cada vez 

más la energía eólica marina, están ganando importancia y notabilidad en cuanto a 

las posibilidades de futuro que pueden proporcionar y su tecnología está 

evolucionando hacia equipos mucho más controlables y competitivos.  

Las turbinas con Generador Doblemente Alimentado (DFIG), conocidas como 

Aerogeneradores Tipo 3, y las turbinas con convertidor en línea (Fully Rated 

Converter), conocidas como Tipo 4, usan convertidores electrónicos para aislarse 

de la red. De este modo son capaces de trabajar en velocidades variables 

proporcionando una mayor generación y también nos proporciona mayor 

controlabilidad para dar soporte a la red. 

Este tipo de turbinas mejoran el soporte a la red durante cualquier suceso 

inesperado, excepto en la Respuesta Frecuencial Primaria Rapida (FPFR) la cual 

está relacionada directamente con la inercia almacenada en el sistema. Este tipo de 

turbinas no son capaces de proveer de una respuesta inercial natural ante una 

caída de la frecuencia debido a que están aisladas de la frecuencia de la red. Si 

aumentamos la penetración de este tipo de turbinas sin poner solución a la falta de 

Respuesta Frecuencial Primaria Rapida estaremos disminuyendo la Respuesta 

Frecuencial del sistema y permitiendo perturbaciones en la red.  

Este Proyecto demuestra que la implementación de un Control Frecuencial mejora 

la Respuesta Frecuencial del Sistema ante una caída de la frecuencia, incluso 

cuando la penetración llega a un 30% del total de la generación.   

También demostramos que los valores que se utilicen de inercia y Droop en el 

Control Frecuencial y la velocidad de trabajo de la turbina pueden afectar a los 

resultados en la Respuesta Frecuecial del sistema. Por ello es fundamental tener en 

cuenta la velocidad de viento con la que trabajamos y el punto operacional en el 

que nos encontramos, y los valores escogidos deben ser los adecuados para el tipo 

de turbina con la que estamos trabajando.   
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1. OBJECTIVE OF THE STUDY 

The main objective of this project is to study the implementation of a frequency 

response control strategy for the enhancement of the fast primary frequency 

response of the doubly fed induction generator (DFIG) wind turbines when there is 

a frequency drop in the power system. 

The wind power plant to be studied will be placed offshore, although the frequency 

response control can be implemented also in onshore wind turbines.  

 

2. THEORETICAL FRAMEWORK 

It is a reality that energy is a necessity. To assure it reaches all individual needs 

and respects the environment, the energy generation needs to move to a 

sustainable and renewable path.  

Renewable energy is the type of energy which is obtained from natural endless 

sources, either there is a great quantity or it is capable of regeneration. Wind 

energy has been used for centuries, mainly for food production or water supply. It 

is nowadays that wind energy technology is used mainly for electricity production.  

The huge increase of these and other renewable technologies and their integration 

into the electricity grid has set out problems for the security of the electric 

network.  

The System Operators of the electricity networks ask for minimum requirements 

for all types of generators to connect to the grid. These requirements can be sum 

up in three main aspects. All generators have to provide: 

 Grid support:  

o Voltage support 

o Frequency response 

 And fault-ride through capability  

Some of these requirements still need research and improvement.  

In this project we are going to focus our attention in to the System Operators 

requirement for frequency response, in particular, the fast primary response also 

called inertia emulation or synthetic inertia.  
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2.1. WIND ENERGY TECHNOLOGY 

Wind energy technology has evolved through the years. In this chapter we are 

going to review the different wind turbine types and their main advantages and 

disadvantages. 

 

2.1.1. WIND TURBINE BASICS 

Before starting with more complicated concepts it is necessary to define some 

basics. 

PARTS OF A WIND TURBINE 

The main components of a wind turbine are: 

 

Figure 1 Components of a Wind Turbine [1] 

The blades are the mechanical components that cause the rotor to spin. The 

most used configuration is the three-blade rotor. 

The hub is a mechanical piece where the blades are placed. The hub and the 

blades form the rotor.   

The low speed shaft rotates at the same speed than the rotor, usually 30-60 

rpm. This low rotational speed need to increase to allow the generator to 

produce electricity. That increment of speed is obtained using a gear box.  
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Nowadays, there is a technology called direct drive that gets rid of the gear 

box by adding a multipole generator. This gearless wind turbine can work at 

the lower rotor speeds.  

The high speed-shaft drives the generator. And the generator produces the 

AC electricity. 

The controller starts up the wind turbine when the wind speed is over a 

certain speed value and it stops the wind turbine when the wind speed is 

higher than an established value to avoid the damage of the turbine.  

The anemometer measures the wind speed and gives the information to the 

controller.  

The pitch helps to control wind speed. It turns the blades out of the wind to 

control the speed of the rotor.  

The yaw drive and yaw motor are used to orient the turbine to keep it facing 

the wind when the direction changes. The wind vane measures the direction 

and gives the information to the yaw drive.  

The brakes stop the rotor when there is an emergency.  

The nacelle contains the great part of the turbine components. The nacelle is 

supported by the tower which contains the access to the top for the 

maintenance team and other electric power devices like the transformer.  

 

OTHER IMPORTANT KNOWLEDGE 

After taking a look inside a wind turbine and finding out how all the pieces 

work together it is also important to know a few concepts related to wind 

turbine power generation. 

The power extracted from the wind is calculated by the following equation: 

      (2.1) 

Where:  

ρ is the air density which depends on the temperature (typical 

value 1.225 kg/m3) 

A is the swept area of the blades 

and v is the wind speed 
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 (2.2) 

The power transferred to the rotor, Pwind turbine, is reduced by the Power 

Coefficient (Cp). The Cp shows us how efficiently the turbine transforms the 

power of the wind into electricity. There is a maximum Cp value which is 

defined by the Betz Limit. The Betz limit states that there is no turbine that can 

extract more power from a wind stream than a 59.25%. Usually the Cp goes 

from 25% to 45%. 

Another important concept we must define is the tip speed ratio. The tip speed 

ratio (λ) is the ratio between the tangential speed of the tip of the blade and 

the actual velocity of the wind: 

       (2.3) 

Both Cp and tip-speed ratio can be used to describe the performance of a wind 

turbine rotor.  

 

Figure 2 Power coefficient vs tip-speed ratio curve [2] 

The maxim power coefficient is achieved only at one tip-speed ratio, see Figure 

2. If we use fixed speed wind turbines this tip speed ratio which maximizes the 

Cp is only achieved once.  
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Working at variable speed gives us the chance to operate at maximum Cp over 

a great range of wind speeds. 

The power generated by a wind turbine is described by its power curve, Figure 

3. The power curve form is similar for all wind turbines. It is possible to 

differentiate four stages, each one represented by a characteristic wind speed 

value.   

 

Figure 3 Example of a Power curve vs wind speed for a 2MW turbine [2] 

 

The start up speed is the wind speed at which the rotor and the blades start to 

move but there is no useful power. In Figure 3 the start up speed is the 

horizontal line that is coincident with the x axe. 

The cut in wind speed is the minimum wind speed at which the wind turbine 

will deliver useful power.  

At higher wind speeds the power generation increases almost exponentially. 

The rated wind speed is the wind speed at which the wind turbine will deliver 

the rated power. For higher wind speeds the wind turbine will deliver always 

the rated power, which is the limit the generator is capable of delivering. 

The cut out wind speed is the maximum wind speed at which the wind turbine 

is allowed to work and deliver useful power. At higher speeds the wind turbine 

can be damaged.  
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2.1.2. A TREND TO GO OFFSHORE 

The last two decades wind energy technology has evolved in such manner that 

nowadays wind energy is clearly one of the best options for the future of 

renewable electric energy generation. 

First wind turbines that went out on the market were onshore but in the last 

few years there is a trend to go offshore. Figure 4, shows the increase of wind 

energy installations from 2001 to 2015 in Europe and a significant growth of 

the offshore wind in the past six years.  

 

Figure 4 Onshore and Offshore annual installations [3] 

The main reasons leading to that change are: 

 There is a lack of available locations onshore. Not all locations 

onshore with good wind resources are available for the 

implementation of a wind power plant. 

 There is a better wind resource offshore than there is onshore. 

 Less social opposition and less visual impact 

 Turbine rated power is higher for offshore wind turbines 

But it is important to mention there are also a few drawbacks that are limiting 

the expansion of the offshore wind energy: 

 Rough marine conditions. This affects the design, the construction 

and the maintenance of the wind turbines. Therefore the investment 

for offshore is twice the investment for the onshore technology [5]. 
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This drawback is the one slowing down the growth and expansion of the 

offshore technology. However, there are countries that try to limit it by using 

legislation to protect and promote this and other emerging renewable 

technologies.  

This could be the case of UK, which is nowadays the number one country in 

Europe with more offshore wind capacity installed (5,060.5 MW) representing 

45.9% of the total, See Figure 5. Germany follows with 3,294.6 MW of installed 

capacity, a 29.9% of the total. 

 

 

Figure 5 Installed Capacity cumulative share by country in Europe [4] 

 

Another aspect of the offshore wind energy worth mentioning is related with 

the available locations offshore. It is well known that if we go far from the shore 

the waterdepth increases. Figure 6 shows the average water depth and 

distance to shore of the offshore wind farms installed in Europe: online, under 

construction and consented wind farms. The circle size represents the total 

power capacity of the wind farm. 
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Figure 6 Average water depth and distance to shore of offshore wind farms [4] 

At the end of 2015, the average water depth of grid-connected wind farms was 

27.1 m and the average distance to shore was 43.3 km.  

Monopile foundations are the most used technology for offshore wind 

nowadays. This technology is used for waterdepths under 40 meteres because 

it is not profitable to install it for higher waterdepths. We can see in Figure 6 

that the greater part of the wind farms are located under 40m of waterdepth.  

 

Figure 7 Share of Substructure Types for Online Wind Turbines 2015 [4] 
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Nevertheless, the future of offshore wind will be based on large scale projects 

located in deeper waters to have sufficient space for the large wind turbines to 

operate effectively. 

This is the main reason why other foundation types are being tested and 

improved.  

Floating foundations could be the solution for the waterdepth limitation. The 

advantatges of this type of technology are: 

 Inexpensive foundation construction 

 Less sensitive to water depth than other types 

 Non-rigid, so lower wave loads 

The disadvantages are: 

 High mooring and platform costs 

 Excludes fishing and navigation from areas of farm. 

Floating foundations are a more expensive technology than monopole 

foundations but cost reduction potential is higher. It is believed that the costs 

of floating foundations could decline by 50% by 2030 [5].  

 

 

 

2.1.3. TYPES OF WIND TURBINES 

 

Type 1 FIXED SPEED WIND TURBINES 

 

Figure 8 Type 1, Fixed Speed Wind Turbine diagram [6] 

This type of wind turbines dominated the market during the 80s and 90s. It 

consisted in a three-bladed rotor, multiple-stage gearbox and a Squirrel Cage 

Induction Generator which was directly connected to the grid trough a 

transformer.  
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The Squirrel Cage Induction Generator needs to absorb reactive power to 

magnetize the generator, provided by a capacitor bank, and a soft starter used 

to start up the machine.  

The main advantages of this first type of wind turbine are: 

 The robustness of the system 

 And the relatively low production costs. 

Nevertheless, they presented several disadvantages that forced to change to 

another technology:  

  The fact that this type of wind turbines operate at a constant speed 

means that we are not allowing the generator to extract the 

maximum available power from the wind.  

 They don’t fulfill the requirements of the grid: The Squirrel Cage 

Induction Generators need to absorb reactive power so they cannot 

provide reactive power in case of voltage drop, no voltage support. 

 They are directly connected to the grid so is difficult to avoid their 

disconnection when there is a fault.  

 

Type 2 LIMITED VARIABLE SPEED WIND TURBINE 

The Limited Variable Speed Wind Turbines appeared during the 90s. They 

were the first step towards the variable speed wind turbines.  

 

Figure 9 Type 2, Limited Variable Speed Wind Turbine diagram [6] 

This type of wind turbine was similar to Type 1, but changed the Squirrel Cage 

Induction Generator to a Wound Rotor Induction Generator. This technology 

included a variable rotor resistance to increase the speed operation range.  

However, this Type 2 or second generation of wind turbines had the same 

disadvantages than Type 1. 
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Type 3 VARIABLE SPEED WITH PARTIAL SCALE CONVERTER WIND TURBINE 

 

Figure 10 Type 3, Variable Speed Wind Turbine with Partial Scale Converter diagram [6] 

The Type 3 consists on a Wound Rotor Induction Generator connected directly 

to the grid by the stator and partially through a partial scale converter 

connected to the rotor. This type of generator is called Doubly Fed Induction 

Generator (DFIG). 

The power converter decouples the network electrical frequency from the 

rotor mechanical frequency, enabling variable speed operation (± 30% of 

synchronous speed.) 

Although we can achieve a better fault ride-through capability and voltage 

support because of the partial scale converter, the controllability can still be 

improved.   

 

Type 4 FULL SCALE CONVERTER WIND TURBINE  

 

Figure 11 Type 4, Full Scale Converter wind turbine diagram [6] 

This type of variable speed wind turbines with full scale converter decouple 

electrically the generator from the grid, which allows us to maximize the 

operational speed range that was limited with the previous wind turbine 

types.  

The grid operator requirements mentioned before can be satisfied with a 

proper grid side converter.  
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This type of wind turbine works for different types of generators: Squirrel Cage 

Induction Generator, Wound Rotor Synchronous Generator and Permanent 

Magnet Synchronous Generator (PMSG).  

  

2.1.4. DOUBLY FED INDUCTION GENERATOR WITH PARTIALLY SCALE 

CONVERTER 

In this project we are going to work with a DFIG Wind Turbine (Type 3). These 

types of wind turbines are the most installed worldwide nowadays, although 

the market trend is changing to Type 4 Wind Turbines which give a higher 

controllability for grid support purposes and a full variable wind speed 

operation.    

Nevertheless, these types of Generators have a few advantages over the rest of 

the technologies that are worth to mention: 

 The rotor circuit is controlled by a power electronics converter. The 

induction generator is able to both import and export reactive 

power, this means better voltage support than Fixed Wind Speed 

Generators. 

 The Partially Scale Converter allows working at a wider range of 

wind speeds than FWSG.   

 The cost of the converter is lower when compared with other 

variable speed solutions because only a fraction of the mechanical 

power, typically 25-30%, is fed to the grid through the converter, the 

rest being fed to grid directly from the stator.  

 The efficiency of the DFIG is better for the reason explained 

previously. 

Generator type  

In this project we are going to work with a Doubly Fed Induction 

Generator (DFIG).  

Gear box 

Generators need high rotational speeds to produce electricity, and the gear 

box is used to increase the rotational speed of the low-speed shaft (30-60 

rpm) to the fast-speed shaft (1000- 1800 rpm).  

However, nowadays there is a trend to move toward a gearless technology 

called Direct Drive generators. These types of wind turbines avoid the use of 

the gear box by adding a great number of poles to the generator, which 

allows us to reduce the rotational speed of the rotor.  
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Figure 12 Wind Farm costs 2010, O&M comparison [5] 

Offshore Wind can double the Operation and Maintenance costs of Onshore 

Wind, because of the difficulties of the offshore environment [5]. 

Gear box is a mechanical part that has friction losses, generates noise, has a 

life much below the expected life of wind turbines and require lubrication 

and constant maintenance. In offshore environments to use direct drive 

generators could mean less operation and maintenance costs and a longer 

wind turbine lifetime. 

Although experts believe that technology is moving to a gearless wind 

turbine, we decided to work with Gear Box Wind Turbines because they are 

the most used technology nowadays. 

 

 Converter 

For our case we are going to work with a back-to-back voltage source 

converter. In the next chapter we will define more deeply the 

characteristics of this type of converters. 

In the figure below we find a simplified diagram of a DFIG Wind Turbine, 

similar to the one we are going to work with. 

 

Figure 13 DFIG wind turbine diagram [7] 
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It is important to mention that the power electronic used it is formed by a 

Generator side converter (GSC) and a Network side Converter (NSC), 

both connected by a DC link.  

 

 

2.2. POWER ELECTRONICS 

Power electronics are devices that control and convert electric power, some of 

them allow wind turbines to work at variable-speed operation. Power 

converters are becoming more attractive for: 

 Their capacity to improve and control the performance of the wind 

turbine 

 Their easy control 

 Their decreasing prices 

 Their improving technology, they can handle higher currents and 

voltages 

The power converters most used in turbine applications are: 

Soft Starter 

The Soft Starter is a power electronic component used in fixed speed wind 

turbines, Type 1 wind turbines. It is a simple and cheap device that helps 

reduce the in-rush current which could go up to 7 times the rated current. With 

the soft starter we avoid voltage disturbances on the grid.  

Capacitor Bank  

Capacitor Banks are used for fixed speed or limited variable-speed wind 

turbines, Type 1 and Type 2 wind turbines.  

It is an electrical component that supplies the reactive power needed to 

magnetize the induction generator. It minimizes the absorption of reactive 

power from the grid.  

Reactive Power Compensators  

In addition to the power electronics named before, we can add a reactive 

power compensator to improve voltage support. Power electronic reactive 

power compensators can be connected to the wind farm point of connection to 

supply reactive power.  

Two examples of reactive power compensators are the Static Var 

Compensators (SVC) and the Static Compensators (STATCOM). 



Control of an offshore wind power plant: Emulated inertia 

23 

 

 

Voltage Source Converters (VSC) 

Voltage Source Converters are widely used for wind turbine application. The 

next figure shows the most used power electronics depending on the type of 

generator: 

 

 

Figure 14 Power electronics in turbine wind turbine applications [2] 

 

For Doubly Fed Induction Generators (DFIG), the commonly used power 

electronic is a Back-to-Back VSC connected to the rotor.  

  

Diode Bridge VSC 

In this type of device the generated AC voltage is converted into DC using a 

diode bridge rectifier and then converted to AC using a Voltage Source 

Converter, which is formed by Insulated-gate bipolar transistors.  

 

Figure 15 VSC with three-phase diode bridge [2] 
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This option is cheaper and simpler than the Back-to-Back VSC converter, 

but it does not give much controllability on the generator side. This type of 

VSC is not used for DFIG wind turbines; it can be used for Fully Rated Wind 

Turbines. 

 

Back-to-Back VSC 

  

Figure 16 Back-to-Back VSC [2] 

Back-to-Back Voltage source converters are formed by:  

 A Rectifier that converts alternate current to DC current. Called 

Generator Side Converter (GSC). The GSC regulates the AC voltage 

at the generator side and the power generated. It can be a Diode 

rectifier or a Voltage source Converter. 

 A Dc link: energy storage capacitors 

 An Inverter that converts direct current to alternate current. Called 

Network Side Converter (NSC). The NSC regulates the reactive 

power and the voltage at the DC link. The most used device is the 

Voltage Source Converter. 

 

Both GSC and NSC are VSCs. Each one has six Insulated-gate bipolar 

transistors (IGBT) controlled by a Pulse Wide Modulation technique (PWM).  

This option gives more controllability on the generator side. It is the option 

we will implement in our project.  

To completely understand the operation of a Voltage Source Converter it is 

important to define some concepts: Insulated-gate bipolar transistor 

(IGBT) and Pulse Wide Modulation (PWM). 
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Insulated-gate bipolar transistor 

An Insulated-gate bipolar transistor (IGBT) is a switch with no moving 

parts. It has three terminals called Collector (C), Gate (G) and Emitter (E). 

The Collector and the Emitter form the conductance path, while the Gate 

controls the device. 

The IGBT is a voltage-controlled device that requires only a small voltage on 

the Gate to allow conduction through the device.  

 

Figure 17 IGBT circuit symbol [8] 

It is a unidirectional device, meaning it can only switch current from 

Collector to Emitter. 

The main advantages of using the IGBT over other types of transistor 

devices are its high voltage capability and relatively fast switching speeds, 

among other characteristics. These make it a good choice for moderate 

speed, high voltage applications such as in pulse-width modulated (PWM), 

variable speed control.  

To understand how an IGBT works inside a Voltage Source Converter we 

are going to explain the example of a single-phase two level voltage 

source converter. 

 

Figure 18 Single-phase two level VSC fundamental principles [2] 
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A single-phase voltage source converter is formed by two IGBTs connected 

in series. The IGBT acts as a switch, only two options are possible: 

electricity is allowed to flow through it or electricity is not allowed through 

it. This switching combination of the two IGBTs creates an output voltage 

waveform of two levels, as we see in Figure 18. 

Depending on the duration of each switching state we obtain a different two 

level waveform.  

It is possible to connect to the same capacitor three single-phase two level 

voltage source converters to form a three-phase converter. 

 

Figure 19 Three-phase two-level VSC [2] 

Three output waves with the same waveform as the single-phase will be 

obtained for the three-phase two-level VSC.  

In our case we need a sinusoidal waveform as output wave; to obtain it we 

need a switching control. The most used switching control for sinusoidal 

waveforms is the Pulse Width Modulation (PWM). 

  

Pulse Width Modulation (PWM) 

There are different control strategies for PWM: square-wave operation, 

carrier-based pulse-width modulation (CB-PWM), switching frequency 

optimal PWM (SFO-PWM), sinusoidal regular sampled PWM (RS-PWM), 

non-regular sampled PWM (NRS-PWM), selective harmonic elimination 

PWM (SHEM), space vector PWM (SV-PWM) and hysteresis switching 

techniques. 
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We will not go further on this topic because it is outside our objective; 

however we will define two of the different control strategies to give a hint 

of how the switching control works:  

 Carrier-based PWM 

The Carrier-based PWM is a classical Pulse Width Modulation switching 

control that uses a fixed-frequency reference sinusoidal signal (Vref) and 

compares it with a triangular carrier wave form (Vtri) to create a switching 

patter.  

 

Figure 20 Carrier-Based PWM [2] 

The intersections between the reference voltage (Vref) and the carrier 

waveform (Vtri) determine the switching instants:  

 

Figure 21 Switching pattern for a single-phase Two-level VSC [2] 

When the Vtri is smaller than Vref the switch Sa1 is ON and the switch Sa2 

is OFF. When the Vtri is higher than the Vref the switch Sa1 is OFF and the 

switch Sa2 is ON. 

This creates an output waveform similar to the one shown in Figure 22. 
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Figure 22 Output waveform example [2] 

Within every carrier cycle, the average value of the output voltage becomes 

equal to the reference value.  

 

 Voltage Space Vector Switching (SV-PWM) 

The most used switching control for Back-to-back Grid Side Generator is de 

Voltage Space Vector Switching (SV-PWM).  

This PWM is based on space vector representation of the switching voltages. 

It has the advantage of being easier to implement than other techniques.  

 

Figure 23 Three-phase two level VSC switching states [2] 

 

A three-phase two-level VSC has three legs and six switches, each leg has 

two possible states ON (1) or OFF (0). The switches must be controlled to 

avoid turning ON the two switches at the same leg at the same time.  
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The converter is able to produce 8 possible switching positions, six active 

switching vectors and two zero vectors (V0 y V7): 

In this technique the sequence of the switching vectors is selected in such a 

way that only one leg is switched to move from one switching vector to the 

next. The switching times of the switching vectors need to be calculated to 

obtain the desired output wave. 

  

2.3. SYSTEM OPERATOR REQUIREMENTS 

The System Operator is the entity responsible of the security in real time of the 

power system and the coordination of the supply and the demand avoiding 

fluctuations or interruptions of supply.  

The System Operator specifies rules and codes that any generation plant must 

fulfill to connect to the grid.  

The main purpose of the codes is to assure that any generating power plant 

connected to the grid can provide the adequate response in front of a sudden 

change. The main aspects to cover are: 

 Grid support:  

 

o Voltage support 

The voltage on the transmission grid is determined by the reactive 

power flows. Variable-speed wind turbines that use power 

electronics have the capability to control reactive power flow. For 

example, if voltage drops, variable wind speed turbines have the 

capability of injecting reactive power to increase the voltage back to 

the desired value.  

o Frequency response 

Generating power units need to have the capability to increase or 

decrease the active power injected to the grid to control changes of 

frequency in the system.  

       -      And fault-ride through capability  

The system also needs that generating power units remain 

connected and support the grid when there is a fault, voltage drops 

of certain magnitudes and durations. 

As mentioned before, this project will be focused only on the Frequency 

response for grid support. 
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2.4. FREQUENCY RESPONSE 

The objective of this project is to study control strategies for first primary 

frequency response of Type 3 wind turbines. For that reason it is necessary to 

understand more precisely what is the frequency response that System 

Operators are requiring to the generating power plants.  

All power systems need to balance generation with demand in real time. When 

there is an unbalance between generation and consumption the frequency, 

which is idealistically maintained in a pre-established value (50 Hz Europe/ 60 

Hz USA), can vary drastically in a short period of time.   

For example, if a big load is connected to the grid (or a big generating plant is 

disconnected) the frequency of the system starts to drop. This causes a 

natural deceleration on the generators who are in synchronism with the grid 

frequency.  

The frequency of the system (f), 50 Hz in Europe, is equal to the synchronous 

rotational speed of the generator (ωs) multiplied by the number of pole pairs 

(p). If the frequency of the system drops so does the rotational speed:  

              (2.4) 

If no measures are taken, this deceleration will lead to an inevitable and 

continuous drop of the system frequency. This is one of the reasons why 

System Operators require to the generation power units connected to the grid 

to respond to a frequency drop by increasing their production through 

different strategies. 

The opposite case is also possible. A sudden decrease in consumption (or big 

load disconnection) will lead to a frequency increase. Then generating units 

will have to decrease production to lower the frequency of the system back to 

the pre-established value.  

In this project we will only analyze the case when there is a drop in the system 

frequency. 

The frequency response of a generating unit is divided in two different 

services: Continuous service and Occasional service. 

Continuous Service 

The continuous service is the service in which the system frequency is 

maintained at a fixed frequency, in our case 50 Hz, inside established 

operational limits which depend on the country. 
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For example, in England the operational frequency is 50 Hz and the 

operational limit is ± 0.2 Hz. This means that the system is allowed to 

continuously work at a frequency between 50.2 Hz and 49.8 Hz.  

This frequency control is achieved by using what is called a governors droop:  

 

Figure 24 Governors droop of a wind turbine used for continuous service [2] 

Normally the governors droop is between 3-5%. For example if we have a 

governor with a 5% droop it would vary the power output of the generator by 

100% of rated power for a 5% deviation from nominal grid frequency. 

This helps control the generators infront of small changes in frequency during 

continuous service. 

 

Occasional service 

Following the example of England, when frequency drops by more than 0.2 Hz 

additional generating capacity is contracted, called Occasional services. 

During occasional services the frequency of the system is allowed to deviate up 

to +0,5 Hz and -0,8 Hz.  

The occasional services are divided in two responses: Primary response and 

Secondary response. 

Primary response can be defined as the additional active power that can be 

delivered by a power generating unit that is available at 10 seconds and can be 

sustained for approximately 20 seconds.  

Secondary response can be defined as the additional active power that can be 

delivered by a power generating unit that is available at 30 seconds and can be 

sustained for 30 minutes.  

See Figure 25 as an example of frequency response during continuous service 

and occasional service. The example uses the operational limits of England and 

Wales grid codes. 
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Figure 25 Example of frequency control using English codes [9] 

In this project we are only interested in the Fast Primary Frequency Response.  

 

Primary Frequency Response 

The primary frequency response is divided also in two parts: Fast Primary 

Response and Slow Primary response. 

 

Fast Primary Frequency Response 

As previously seen, when there is a frequency drop on the system the Fixed 

Wind Speed Turbines (FWST) naturally decelerates the rotor speed of the 

generator. This deceleration results in the conversion of the kinetic energy 

stored in the machine into electrical energy. The kinetic energy in the 

rotating machine mass can be calculated as: 

   (2.5) 

Where J is the moment of inertia of the wind rotor and ω is the rotational 

speed. We can also calculate the Inertia constant (H), which will give us the 

time that the generator can provide nominal power by only using its kinetic 

energy: 

    (2.6) 

Where S is the nominal apparent power. Typical H values for wind turbines are 

between 2-6 seconds.  
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The natural reaction of FWST helps the system to start recovering from the 

frequency drop by injecting the power extracted from the kinetic energy 

stored in the rotating mass. This power injection or inertia response can only 

last a few seconds. 

 

 

Figure 26 Fast Primary response of Fixed Speed Wind Turbine [2] 

 

An example of Fixed Wind Speed Turbines natural inertia can be seen in Figure 

26, at time equal to 30 seconds a sudden drop in the rotor speeds (frequency 

drop) results in an increase in power output.  

The problem that we encounter is that nowadays the greater part of the wind 

turbines connected to the grid are type 3 and Type 4 wind turbines, variable 

speed wind turbines that use converters to decouple partially or completely 

the wind turbine from the grid. This means that for Type 3 and Type 4 

generators the natural inertial response is not possible because the frequency 

on the grid side is independent of the frequency on the generator side.  

This fact is causing a reduction on the whole system inertia.  

To show the impact of the reduction of the system inertia in the frequency 

response of the system we are going to use a real example based on the United 

States Power System.  

The United States Power System which is formed by three interconnections: 

Eastern Interconnection, Western Interconnection and Texas. The Figure 27 

describes the Frequency Response in front of a frequency drop of the three 

systems.  

As we can see, the rate of frequency fall of the Eastern Interconnection (blue 

line) is lower than the other two systems, because the stored system inertia is 

higher.  
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Figure 27 Frequency response US Power System [10] 

 

We can affirm that the rate of frequency drop is proportional to the stored 

inertia of the system.  

So if there is a sudden drop in the frequency of a system with high level of 

wind energy penetration (Type 3 and 4 wind turbines with no Frequency 

control) we can expect direct impact on two important aspects: 

 The rate of change of frequency (ROCOF) increases. In this 

case, the frequency may drop very quickly during the OX Period. 

 

 We hit minimum frequency values at shorter times so we need 

faster actions for frequency response. This is called Maximum 

frequency deviation [NADIR].  

 

 

 

Figure 28 ROCOF and NADIR representation [11] 
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In Figure 28 we can see the graphic representation of ROCOF (called frequency 

gradient df/dt) and NADIR. Both of these quantities shall be kept as small as 

possible to guarantee a good frequency response.  

The Fast Primary Response or inertia contribution to the system of Type 3 

and 4 wind turbines is not achieved with conventional controls. Therefore, it is 

important to find a control strategy to emulate inertia and restart the Fast 

Primary Response of the system. This is the main objective of this project.  

 

Slow Primary Frequency Response 

We won’t go into deep in Slow Primary Response or Secondary Response 

strategies, because is not part of the study. But we certainly think it is 

important to mention both responses briefly to have a notion of both concepts. 

The Slow Primary Response is achieved by a governor action; an automatic 

droop control loop of the governor allows increasing the turbine’s output. This 

is a slower response than the natural or emulated inertia. 

 

With a proper droop control we can decrease the NADIR value, while 

with a proper inertia emulation control we can decrease the ROCOF.  

 

Secondary Frequency Response 

There are three Secondary Response strategies: 

 Pitch Angle Control: 

This method consists in changing the pitch angle from an optimum 

value to a different pitch angle value leaving a margin to power 

generation in case of a drop in the frequency of the grid.  

For example in Figure 29, the point Q is placed in the power curve 

characteristic of the optimum pitch angle (-2º) at which we will obtain 

higher power ratings. Instead of working at -2º, we have the option to 

change the pitch angle value to one that produces less power, for 

example +2º at point P. This way in case of the need to increase power 

production we can change pitch angle to the optimum value and gain 

that energy we are spilling in continuous operation. 

For the Fixed Speed Wind Turbines this is the only method available to 

achieve energy reserve. 
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Figure 29 Secondary Response example [2] 

 

 Overspeeding: 

This method consists in working at a different generator speed than the 

optimum. For example, point Q is placed in the optimum pitch angle 

value and in the optimum generator speed value. If we decide to change 

generator speed and increase it without changing pitch angle we will be 

lower our power production.  

When the system needs an injection of power the controls let the 

generator naturally decelerate and go back to optimum value to 

increase power production.  

 

 The use of energy storage: 

This could be an option for future implementations. Nowadays electric 

energy storage is not viable economically compared to the other two 

options. 

 

 

2.4.1. EMULATED INERTIA 

Manufacturers have started to integrate controls on Type 3 and 4 wind 

turbines in order to achieve the desired inertial response. This inertia is 

known as emulated inertia or synthetic inertia. 

There are several methods to achieve emulated inertial response from fully 

rated converter wind turbines: 
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1- Using the hidden inertia 

Using this method we are allowed to work at optimum power 

production speed and optimum pitch value, Figure 29. When there is a 

drop in frequency on the grid side the converter sends a command to 

the generator to decelerate.  

As we already explain, the accumulated inertia is transformed then in 

electricity leading to a fast frequency response which is similar to the 

one that synchronous machines have naturally.  

2- Reserve capacity, pitch control 

With pitch control we can be working at different pitch value than the 

optimum and when the power converter gives the command that there 

is a frequency drop on the grid we can go back to optimum value. 

3- Overspeeding 

As explained in Secondary Frequency Response, Overspeeding consists 

in working at higher generator speed than the optimum. This way when 

the drop in frequency occurs we can decelerate our machine injecting 

the power produced by the inertia and achieving the optimum speed so 

we also increase the power production.  

 

The most studied and used method is the Hidden Inertia, because is the only 

method that allows to work at optimal operational point, which means we are 

always producing the maximum power. The other two methods force us to 

work outside the optimum, so we are losing power at normal operation. 

Another reason to discard Pitch control is that it is a slow method, we need to 

give time to pitch control to move the blades and fast primary response need to 

be available at a few seconds after the frequency drop. 

 

When implementing an emulated inertia control we need to take into account 

different aspects: 

 

Wind speed 

In Figure 30, we compare the emulated inertia response (EIR) of a wind turbine 

at different wind speeds. The reason we want to compare the same turbine at 

different speeds is because the stored energy on a machine depends on its 

rotational speed. Comparing different wind speeds will give as a more precise 
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emulated inertia response tendency. We see that the emulated inertia which 

appears from second 2 to second 5 is similar when the wind speed is above 6 

m/s. We can also observe that the frequency recovery changes with wind 

speed.  

 

 

Figure 30 Emulated Inertia Response of a Wind Turbine at different wind speeds [10] 

 

So we can conclude that emulated inertia could give a proper frequency 

response at the first seconds after the frequency drop. After this initial 

response the frequency recovery will vary depending on wind speed. Anyhow, 

it is important to point out that natural inertia is faster than the emulated 

inertia. 

 

The parameters of the Power electronic control 

During the implementation of the control for the emulated inertia it is 

important to tune the parameters in the right way. 

Figure 31 shows us three types of frequency response depending on how we 

set the parameters of the emulated inertia control.  

The first case is a Base case in which there is no Emulated inertia control, so the 

turbine remains decoupled from the frequency grid by the Power Electronic 

device, there is no injection of power therefore the frequency drops to the 

minimum. 
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Figure 31 Tuning the power electronic response [10] 

 

The second case is an aggressive initial Emulated Inertia in which we set the 

parameters to inject a high amount of power as fast primary response; this will 

lead to a new and inevitable frequency drop.  

The third case is an over-sustained frequency Emulated Inertia in which the 

injection of power last more than the appropriate time leading to frequency 

decay.  

And the last case is the moderate Emulated Inertia Response in which the 

balance between the quantity of power injected and time of the response is at 

such equilibrium that we can reach a proper frequency response.  
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2.5. GRID CODES 

2.5.1. EUROPE 

The European Network of Transmission System Operators for Electricity, 

known as ENTSO-E, is an association of 35 countries from all Europe founded 

and given legal mandate at 2009 by the EU’s Third Legislative Package for the 

Internal Energy Market. 

They act like the meeting point between the different System Operators on the 

market. Their main objectives are: 

 Develop suitable response to the changing power system due to the 

increase of renewable energy generation while maintaining security 

of supply 

 Flexibility 

 Regional cooperation 

 Etc. 

They can achieve these objectives by cooperating mainly into drafting and 

implementing the grid codes. 

Network Code on Requirements for Grid Connection Applicable to all 

Generators 

This code is one of the main drivers for creating an efficient European (and 

global) market in generator technology and it is applicable to all type of 

generators that want to be connected to the grid.  

The requirements are defined depending on the type of Power Generating 

module. A Power Generating Module is either a Synchronous Power 

Generating Module or a Power Park Module. 

Power Park Module is a unit or ensemble of units generating electricity, which 

is connected to the Network non-synchronously or through power electronics, 

and has a single Connection Point to a transmission, distribution or closed 

distribution Network. 

The Power Generating modules are classified based on its Connection Point 

voltage and the Maximum Capacity. The latter depends on the Relevant TSO 

(region). 

The Connection Point is defined as “the interface at which the Power 

Generating Module is connected to a transmission, distribution or closed 

distribution Network”.  
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The Maximum Capacity is “the maximum continuous Active Power which a 

Power Generating Module can feed into the Network”. 

For the Offshore Power Park modules, the requirements are described at 

Chapter 4: Requirements for Offshore Power Park Modules. 

The Article 18 defines the General provisions [12]:  

1. The requirements in this Chapter apply to the connection to the Network of 

Power Park Modules located offshore. A Power Park Module located offshore 

which does not have an Offshore Connection Point shall be considered as an 

Onshore Power Park Module and thus shall be compliant with the 

requirements set forth for the Power Park Modules situated onshore. 

For our study we will consider that the Power Park Module (an ensemble of 

units generating electricity) is placed offshore with an Offshore Connection 

Point. So we should follow the requirements for Frequency Stability set at 

Article 19: Frequency Stability Requirements Applicable to Offshore Power Park 

Modules: 

“The Frequency stability requirements defined respectively in Article 8(1) (a), 

(b), (c), (d) and (e), Article 10(2) and Article 16(2) (a) shall apply to any 

Offshore Power Park Module.” 

All the articles mentioned are requirements for frequency response. However, 

as mentioned in previous sections, the objective of this project is focused on 

fast primary frequency response, also known as emulated inertia or synthetic 

inertia. And this topic requirement is defined on Chapter 3, Requirements for 

Power Park Modules in Article 16 (2). 

Article 16 (2) defines the Requirements for Type C Power Park Modules 

regarding Frequency Response. Although it is also required for Type D Power 

Park Modules and Offshore Power Park Modules, among others.  

The Article defines the following statements [12]: 

a) With regard to the capability of providing Synthetic Inertia to a low 

Frequency event: 

1) The Relevant TSO shall have the right to require while respecting 

the provisions of Article 4(3), in co-operation with other TSOs in the relevant 

Synchronous Area, a Power Park Module, which is not inherently capable of 

supplying additional Active Power to the Network by its Inertia and which is 

greater than a MW size to be specified by the Relevant TSO, to install a feature 

in the control system which operates the Power Park Module so as to supply 

additional Active Power to the Network in order to limit the rate of change of 

Frequency following a sudden loss of infeed. 
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2) The operating principle of this control system and the associated 

performance parameters shall be defined by the Relevant TSO while 

respecting the provisions of Article 4(3). 

 

To clarify the points defined previously, it is important to say that the Article 

4(3) [12] mentions that “The terms and conditions for connection and access to 

networks or their methodologies shall be established by the National Regulatory 

Authorities, or by the Member States in accordance with the rules of national law 

implementing Directive 2009/72/EC, and with the principles of transparency, 

proportionality and non-discrimination.” 

ENTSO-E Article 16 (2) recognizes the right to the relevant TSO of the region 

in which the Power Park Module is installed to ask for synthetic inertia 

response.   

2.5.2. SPAIN 

Spanish TSO, Red Eléctrica de España S.A. (REE), which is a member of the 

ENTSO-E has not include yet a code regarding emulating inertia.  

There is a draft in Spanish legislation that mentions this important matter [13]: 

Separata del Borrador PO 12.2.: Technical requirements for wind energy, 

photovoltaic and all other generation plants which technology does not use 

a synchronous generator directly connected to the grid 

In particular the Section 8.3.4.: Future perspective of technical 

requirements speaks about emulated inertia and names a few non mandatory 

requirements for new synchronous generation units to guarantee minimum 

conditions for security of supply.  

The requirements are not mandatory; this draft encourages to apply the 

requirements to improve the service and comes ahead of time of future 

legislation on the matter. 

 

2.5.3. GREAT BRITAIN 

The National Grid Electricity Transmission (NGET) is the relevant TSOE in 

England and Wales. NGET is responsible for ensuring that system supply and 

demand are balanced on a second by second basis, 24hours a day, 365 days a 

year in the Great Britain Transmission Network. 
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In reference of synthetic inertia Grid Code Frequency Response Working 

Group proposed in 2010 a possible control to assure emulated inertia for Type 

4 Wind Turbines, see Figure 32. 

 

 

Figure 32 Proposed synthetic inertia by the National Grid frequency Response Group [14] 

 

However, they finally decided not to include this requirement in their grid 

codes. 

Synthetic inertia or fast primary frequency response is then a requirement 

needed by TSO to assure security of supply, although currently it is not a 

mandatory requirement the ENTSO-E and other TSOs are starting to taking into 

account this aspect as an important issue. Therefore, the study of new control 

strategies for synthetic inertia and their implementation is an important matter 

for the full development of renewable energies and their integration to the grid. 
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3. SIMULATION 

The simulation used for the study is an existing Simscape Power Systems-

MATLAB code created by Venkatesh Yadav [15], which was modified in order to 

achieve the objectives of the project. 

The Simscape-MATLAB code simulates a grid system with three synchronous 

machines and a Wind Energy Power Plant that inject power to the grid at the 

same time that two loads are consuming the power generated.  

Initially the system is completely balanced which means the generation 

matches the consumption. 

This simulation is capable of simulate a decrease on the system frequency by 

adding and additional load. 

The total duration of the grid system simulation is 50 seconds; the system 

frequency is set to drop at the 30 seconds mark, so our project will analyze the 

behavior of the system from the 25 second mark to the 50 second mark. 

 

3.1. DESCRIPTION OF THE STUDY CASE 

Before starting to describe the structure of the simulation, it is important to 

define the main parameters that will characterize the study.  

 

WIND POWER PLANT CHARACTERISTICS 

Number of wind turbines N (*) 

Default Wind speed 12 m/s (**) 

Wind Turbine type Type 3 

Generator type Doubly Fed Induction Generator (DFIG) 

Type of converter Back-to-back Voltage Source Converter with PWM 

Wind Turbine Rated power 1.5 MW 

Table 1 Wind Power Plant characteristics 

*In the study we will modify this parameter to achieve different levels of Wind Energy 

Penetration in the system 

** We will modify the default wind speed value to analyze the system behavior  
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GRID CHARACTERISTICS  

Frequency of the grid 50 Hz 

Initial total Load 1600MW 

Additional Load 160MW 

Number of synchronous turbines 3 

Synchronous Turbine Rated Power (unit) 900MW 

Table 2 Grid Characteristics 

 

FREQUENCY CONTROL DEFAULT CHARACTERISTICS  

Default inertia control constant (H) 5.04 

Default Droop value 0.05 

Table 3 Frequency control Default values 

 

The Frequency control values, inertia control constant and Droop control, will 

be modified to study the frequency response of the system for the different 

scenarios. 

 

3.2. SIMSCAPE POWER SYSTEMS SIMULATION DESCRIPTION 

The simulation is composed by two different areas: Area 1 and Area 2 

connected by a three-phase cable of 220km of length.  

 

 

Figure 33 First level of the Simscape Power Systems Simulation [15] 
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Figure 34 Second level Area 1 of the Simscape Power System Simulation [15] 

 

Area 1 is composed by: 

 The Wind Power Plant (WPP) with N number of wind turbines connected to 

the grid. The connection is made through two three-phase transformers, one 

represents the transformer which is placed inside each wind turbine and the 

other represents the transformer located at the substation.  

 

 A 900MW Synchronous machine connected to the grid through a three-

phase transformer 12 km away from the WPP. A regulation block is added to 

control the Power generated by the synchronous machine. This will allow us 

to increase or decrease the Wind Energy Penetration.  

 

 One initial load of 800MW connected to the grid 10 km away from the 

Synchronous machine. Connected to this load there is a RLC Load that defines 

the active and reactive power we want to consume at this point.  

 

 Additional mechanism connected to the initial load composed by a break 

and an additional load of 160MW. This mechanism is the one that will 

simulate the frequency drop of the system at time 30 seconds. 
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 The frecuency control or Frequency regulation Block controls two main 

parameters: the Inertia and the Droop of the Wind Power Plant (WPP).  

 

 

Frequency control of the Wind Power Plant: 

 

Figure 35 Close up of the Frequency control Droops [15] 

The input data used for the Frequency control is the deviation of the rotor 

speed of the synchronous machine. The deviation of the speed will help us 

determine if there is a the deviation of the frequency on the system.   

If we take a look inside the frequency control, figure 35, we can observe it is 

composed by two main proportional controls: the first one controls the 

Inertia that initialy is set at 2*5.04 and the second control is used for Droop 

control which as a default value of 1/5%.  

From the first control, inertia control, we use a derivative block to know how 

fast the frequency is changing. From that derivative we can extract the 

ROCOF, Rate of Change of Frequency, which is the frequency gradient df/dt 

(see chapter 3.2.1).  

The First-Order filters helps us avoid the response of the control infront of 

sudden changes in the system, avoids low frequencies in the case of the 

inertia control, and avoids high frequencies in the case of the Droop control. 

Both controls result in the final Power gain of the frequency control.  

The third control is just to know the real values of the frequency at each 

point.  
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Area 2 is composed by: 

 One initial load of 800MW connected to the grid 220 km away from the Area 

1. Connected to this load there is a RLC Load that defines the active and 

reactive power we want to consume at this point. 

 Two 900MW Synchronous machines connected through a three-phase 

transformer at 10km and 35km away from the Load of the Area 2. A 

regulation block is added to each turbine to control the Power generated by 

the synchronous machine. This will allow us to increase or decrease the Wind 

Energy Penetration. 

 In this Area 2 we also include a control that transforms the pu values of the 

frequency into Hz.  

 

 

Figure 36 Second level Area 1 Simscape Power Systems Simulation [15] 

 

 

3.3. SCENARIOS FOR THE SIMULATION 

We are going to simulate different scenarios to analyze the behavior of the system 

in front of the change of different parameters. 

The parameters we are going to change are: 

 Wind energy penetration into the system.  
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At the same time for each wind energy penetration scenario: 

o Inertia control 

o Droop Control 

 Wind speed of the WPP 

 

Wind Energy Penetration 

We will study the following level of wind energy penetrations: 10%, 15%, 20%, 

25% and 30%. To do that first we need to set the values of the total number of 

wind turbines on the system and limit the power delivered from the Synchronous 

Machines in order to generate 1600MW and match the initial load. 

The values for N, number of wind turbines operating at the Wind Power Plant, and 

Pref, percentage of power generated by the synchronous machine with respect of 

the nominal power; will be: 

 

  N Pref2 Pref3 Pref4 

10% Penetration 160 0.537 0.535 0.535 

15% Penetration 236 0.497 0.51 0.51 

20% Penetration 316 0.476 0.476 0.476 

25% Penetration 395 0.443 0.444 0.444 

30% Penetration 469 0.413 0.414 0.414 

Table 4 Parameter values to determine the different levels of Wind Energy Penetration of the System 

 

These values are only used when the wind speed is set at the default value of 12 

m/s. 

 

For each level of Wind Energy Penetration we will also change the following 

parameters: 

Default values 

In this scenario we will leave wind speed, Inertia control constant and 

Droop control values as the default ones: 

Wind speed:   12 m/s 

Constant of Inertia:  5.04 

Droop:    5% 
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No frequency control 

In this scenario we will leave wind speed as default value and Inertia 

control constant and Droop control values will be set to zero.  

This scenario will give us an idea of the frequency response of a system with 

energy penetration and no additional frequency control. 

 

Inertia control  

For each level of penetration we will simulate 5 different values for the 

Inertia control constant, leaving all the rest of the parameters set as the 

default ones (droop is kept at 5% and wind speed at 12 m/s): 

Constant of inertia below default value H=5.04 

H=0;  H=2;  H=4 

Constant of inertia above default value H=5.04 

H=6;  H=10 

 

Droop Control Values 

For each level of penetration we will simulate 5 different values for the 

Droop, leaving all the rest of the parameters set as the default ones (Inertia 

control constant is kept at 5.04 and wind speed at 12 m/s): 

Droop Values below default value 5% 

0;  1%;  2% 

Droop values above default value 5% 

6%;  10% 

 

Wind speed of the WPP 

With the inertia constant and Droop set as the default values, H=0.54 and Droop 

5%, and a level of wind energy penetration of 10% we will simulate different wind 

speeds: 

Speeds below default value 12 m/s:  10 m/s 

Speeds above default value 12 m/s:  15 m/s; 17m/s 
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4. RESULTS 

In this chapter we decided to analyze only the most relevant cases over the more 

than 60 scenarios studied. In any case, all the results can be found on the Annexes 

of this project. 

4.1. CASE 1: 10 % WIND ENERGY PENETRATION, DEFAULT WIND SPEED=12 m/s 

For this first case we chose the scenario of the 10% of Wind Energy Penetration 

with a wind speed set at the default value of 12 m/s. The purpose of analyzing the 

results of this first case is study the scenario in which the Frequency control values 

of inertia and Droop are set to zero and compare it with the Scenario in which the 

Frequency control is set at the default values. 

4.1.1. NO FREQUENCY CONTROL 

By setting the Frequency control values at zero we expect to have a worse 

frequency response than if it there is Frequency control available for the 

Wind Turbines; because in this case, only the synchronous machines 

connected to the grid will be able to support the frequency response of the 

system with their natural inertia. 

FREQUENCY RESPONSE 

Area 1: Wind Turbine Area 

 

Figure 37 Frequency Response at Area 1, 10% Wind Energy Penetration No Frequency control 
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Area 2: Synchronous Machine 

 

Figure 38 Frequency Response Area 2, 10% Wind Energy Penetration No Frequency control 

The frequency response of both turbines is similar to the one show at the 

figure 25 (3.2.1. Frequency response chapter), where after and additional 

load is connected the frequency drops quickly until it reaches a minimum 

value called NADIR.  

The first seconds after the frequency drops are known as Fast Primary 

Frequency Response and it is directly related with the system inertia 

capability. In this case, only synchronous machines will be able to provide 

this Fast Frequency Response, due to their natural inertia response. This is 

the main reason why the results in Area 2 are slightly better than in Area 1:  

AREA 1   AREA 2 

% Wind Penetration NADIR   % Wind Penetration NADIR 

10% 49,6479153   10% 49,668918 

Table 5 NADIR values of 10% Penetration and No frequency Control 

 

Also, the Rate of Change of Frequency (ROCOF) of the Area 1, is higher than 

the ROCOF of the synchronous machine.  
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DFIG Wind turbines are partially decoupled from the grid. Therefore the 

frequency of the grid does not affect the rotor mechanical frequency. If 

there is not a control that forces the machine to react to the frequency drop 

they won’t support the frequency of the grid.  

 

POWER GENERATED BY THE WIND TURBINE 

 

Figure 39 Power Generated by Wind turbine (pu), 10% Wind Energy Penetration No 
Frequency control 

Another aspect we need to analyze is the Power Generated by the Wind 

Turbine. When there is a frequency drop the system needs to increase the 

generation or decrease the load consumption. In this case, we need to 

increase the total power output. As we see in the figure above, the Power 

Generated by the wind turbine remains the same after the 30 second mark. 

This means the Wind Power Plant is not giving the desired frequency 

response. 

 

 SPEED OF THE WIND TURBINE 

Other aspect of the wind turbine behavior that we need to analyze is the 

speed of the wind turbine. When there is a frequency drop in the system 

synchronous machines starts to decelerate naturally, that kinetic energy 

stored in the rotating mass is then injected into the grid as electric power.  

As we have seen there is no increase in the power output of the turbine, and 

as we see in the figure below is because the speed of the wind turbine 

remains virtually the same.  
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Figure 40 Wind turbine speed (pu), 10% Wind Energy Penetration No Frequency control 

 

WIND TURBINE ELECTROMAGNETIC TORQUE 

 

Figure 41 Wind turbine electromagnetic Torque, 10% Penetration No frequency Control 

The Electromagnetic torque is related with both the power and the speed: 

𝑇 =
𝑃

𝜔
 

If power and speed are constant so it is the Electromagnetic Torque, as we 

see in figure 41.  
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4.1.2. DEFAULT VALUES OF INERTIA AND DROOP 

In this new scenario we are setting the Inertia Control Constant value and 

the Droop Control value at default, H= 5.04 and Droop= 5%. 

 

FREQUENCY RESPONSE 

Area 1: Wind Turbine Area and Area 2: Synchronous Machine 

With Frequency Control set at default values we can see an improvement on 

the ROCOF of the Area 1, figure 42, and also of the Area 2, figure 43.  

 

Figure 42 Frequency Response at Area 1, 10% Wind Energy Penetration Default Values 

 

We can also see an improvement in the NADIR values. It increases a  0.09% 

with respect to the No Frequency Control scenario. 

AREA 1   AREA 2 

% Wind Penetration NADIR   % Wind Penetration NADIR 

10% 49,6884807   10% 49,7139706 

Table 6 NADIR values of 10% Penetration and Frequency Control with Default values 
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Figure 43 Frequency Response at Area 1, 10% Wind Energy Penetration Default Values 

 

POWER GENERATED BY THE WIND TURBINE and SPEED OF THE WIND 

TURBINE 

 

Figure 44 Power Generated by Wind turbine (pu), 10% Wind Energy Penetration Default Values 

In this scenario we can see an increase in the Power output of the generator 

when the frequency starts to drop at 30 second mark.  
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The control when detects a significant frequency drop in the system orders 

the turbine to decelerate, figure 45.  

As explained before, the kinetic energy stored in the rotating mass is 

injected into the grid as electric power, figure 44.  

  

Figure 45 Wind turbine speed (pu), 10% Wind Energy Penetration Default Values 

 

WIND TURBINE ELECTROMAGNETIC TORQUE 

 

Figure 46 Wind Turbine Electromagnetic Torque, 10% Wind Energy Penetration Default Values 

As we already know, electromagnetic torque is related with power and 

rotor speed. In this case both parameters are modified and therefore the 

electromagnetic torque.  
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4.1.3. COMPARISON OF NO FREQUENCY CONTROL VS FREQUENCY 

CONTROL WITH DEFAULT VALUES  

 

FREQUENCY RESPONSE 

Area 1: Wind Turbine Area and Area 2: Synchronous Machine  

 

 

Figure 47 Frequency response in Area 1 and Area 2, 10% Penetration No frequency control vs 
Frequency control with Default Values 
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As expected with the Frequency control set at Default values we achieve a 

better Frequency Response in both areas. ROCOF decreases and NADIR 

increases due to the emulated inertia and the Droop Control. The inertia 

gives us a fast primary response, lowering the Rate of Change of Frequency 

and giving time to the Droop or slow primary control to increase the Power 

output leading to a decrease in the NADIR, minimum Frequency value 

achieved.  

The oscillations we see in the Area 1 appear in all the scenarios 

simulated in this project. After studying the possibilities that may have led 

us to these oscillations we realized that the author of the simulation took as 

a reference the Kundur model.  

The kundur model consists of 2 symmetrical areas linked together by two 

230 kV lines of 220 km length. It was designed to study low-frequency 

electromechanical oscillations in large interconnected power systems.  

Knowing that, we will proceed with the study taking into account that this 

simulation will have oscillations into the Area 1 due to the model the author 

took as reference. 

 

POWER GENERATED BY THE WIND TURBINE 

 

Figure 48 Power Generated by the Wind turbine, 10% Penetration No frequency control vs Frequency 
control with Default Values 

Not having Frequency control means there is no emulated inertia and 

therefore the turbine cannot inject additional power. When there is a 
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Frequency Control available we are able to decelerate the machine and 

inject that kinetic energy stored in the rotating mass as electric power.  

 

SPEED OF THE WIND TURBINE 

It is important to notice, that the emulated inertia can only last a few 

seconds. We are decelerating the machine to take advantage of the energy of 

the rotating mass. If we decelerate the generator for a bigger period of time 

the machine will end up slowing down at a point it could be hard to recover 

or even worse, it can end up stopping completely. Both cases will be 

contributing to drop even more the frequency of the system.   

 

Figure 49 Wind turbine Rotor speed, 10% Penetration No frequency control vs Frequency control with 
Defaul Values 

We can see in the Frequency control with Default values, that after the 

deceleration the power injected to the grid is lower than it was before the 

frequency drop. In this case it didn’t reach the critical points explained 

before.  

 

WIND TURBINE ELECTROMAGNETIC TORQUE 

The same happens with the electromagnetic torque, if there is Frequency 

Control that allow us to emulate inertia we can decelerate the machine 

when is needed, which means we are modifying the electromagnetic torque.  
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Figure 50 Wind Turbine Electromagnetic Torque, 10% Penetration No frequency control vs Frequency 
control with Defaul Values 

 

 

4.2. CASE 2: COMPARISON OF 10% WIND ENERGY PENETRATION VS 30 % WIND 

ENERGY PENETRATION, DEFAULT WIND SPEED=12 m/s 

We’ve seen how the system behaves in front of a frequency drop when the 

penetration of Wind Energy is a 10% of the total Generation, when there is 

Frequency control and when the Frequency Control is disabled.  

The issue that is nowadays worrying experts is that renewable energy is gaining 

importance and the penetration of this new technologies is increasing. So it is 

important to also analyze the case of 30% Wind Energy Penetration and compare 

it with the case of lower Wind Energy Penetration explained previously.  

 

4.2.1. COMPARISON OF NO FREQUENCY CONTROL OF 10% 

PENETRATION VS 30% PENETRATION 

FREQUENCY RESPONSE 

As expected, higher wind energy penetration with No Frequency Control 

available will lead to a decrease in the Frequency Response in both Area 1 

and Area 2.  This is because we are lowering the total stored inertia of the 

system. 
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Figure 51 Frequency response in Area 1: 10% Penetration vs 30% Penetration No frequency control 

ROCOF increases in the 30% Wind Energy Penetration case and NADIR 

values decrease, both are a clear example of the problem that high 

renewable energies penetration can cause if there is no Frequency Control 

available that can provide Frequency support to the grid.  

 

Figure 52 Frequency response in Area 2: 10% Penetration vs 30% Penetration No frequency control 
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POWER GENERATED BY THE WIND TURBINE 

 

Figure 53 Power generated by the wind turbine: 10% Penetration vs 30% Penetration No frequency 
control 

Although we see an oscillation in the 30 seconds mark, that could be due to 

the turbine detecting an unexpected event, no additional power is being 

injected to the grid as we can see at the rest of the period simulated.  

SPEED OF THE WIND TURBINE 

 

Figure 54 Wind Turbine rotor speed: 10% Penetration vs 30% Penetration No frequency control 
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Wind Turbine speed remains constant, there is no deceleration because 

there is no Frequency Control that can orders the machine to decelerate. 

 

4.2.2. COMPARISON OF DEFAULT VALUES 10% PENETRATION VS 30% 

PENETRATION  

FREQUENCY RESPONSE 

 

Figure 55 Frequency response in Area 1: 10% Penetration vs 30% Penetration Frequency control with 
default values 

 

Figure 56 Frequency response in Area 2: 10% Penetration vs 30% Penetration Frequency control with 
default values 
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This new scenario, Frequency control with default values, shows us how for 

the 30% of Wind Energy Penetration the Frequency Response is much 

slower. This means, that the Rate of Change is slower giving time to the 

system to recover the frequency and avoiding lower NADIR values.  

The frequency recovery is more stable than the one with the 10% Wind 

Energy Penetration.  

 

POWER GENERATED BY THE WIND TURBINE 

 

Figure 57 Power generated by the Wind Turbine: 10% Penetration vs 30% Penetration Frequency 
control with default values 

Here we see more clearly, of the 30% case is giving a more stable response. 

The power is being injected gradually, we keep responding during a longer 

period of time.  

  

SPEED OF THE WIND TURBINE 

Rotor speed is related directly with power. If we inject power gradually 

means we are decelerating the machine also gradually.   
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Figure 58 Wind Turbine rotor speed: 10% Penetration vs 30% Penetration Frequency control with 
default values 

 

4.3. CASE 3: NADIR OF ALL WIND ENERGY PENETRATIONS, DEFAULT WIND SPEED=12 

m/s 

As said previously we simulated more than 60 cases for this project. To summarize 

the influence of the percentage of wind energy penetration into the systems 

frequency response we are going to study the NADIR for a scenario with No 

frequency control and for a scenario with Frequency Control Default.   

4.3.1. NO FREQUENCY RESPONSE ALL PENETRATIONS: 

 

Figure 59 NADIR All Penetrations- Area 1 and Area 2, No frequency control 
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The NADIR tends to decrease while the penetration of Wind Energy increases. This 

is because Wind Turbines are partially decoupled and are not able to give 

frequency response if the controller is disabled.  

As seen previously, the NADIR on the Area 2 is higher due to the frequency 

response of the Synchronous Machines.  

 

4.3.2. FREQUENCY RESPONSE WITH DEFAULT VALUES ALL 

PENETRATIONS: 

 

Figure 60 NADIR All Penetrations - Area 1 and Area 2, Frequency Control with Default data 

In this case, we see all the opposite. The NADIR is higher when the penetration of 

Wind Energy is higher.  

At first we thought it was because we were not working at the optimal point and 

we were using the overspeeding technique. The overspeeding technique consists 

in working at a higher rotor speed out of the optimal operation point, when there 

is a drop at the frequency of the system we can decelerate the machine and reach 

that optimum operational point, allowing us to emulate inertia and increase the 

power output all at once.   

Nevertheless, after taking a look at the results of the different scenarios and 

comparing it with the turbine power characteristics we realized that it was 

because of the inertia emulation.  

We will explain more deeply how the power characteristics work. See Case 6 

where we modify the working wind speed. 
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4.4. CASE 4: 30% WIND ENERGY PENETRATION, INFLUENCE OF THE FREQUENCY 

CONTROL. DEFAULT WIND SPEED=12 m/s 

By now we only studied two possibilities related to the frequency control 

parameters: No frequency control, values of inertia and Droop controls set to zero, 

and Frequency control with Default Values, H=5.04 and Droop=5%. 

To see how the inertia control and the Droop control really influence the frequency 

response of the system we are going to study a scenario with default wind speed 

12 m/s, 30% Wind Energy Penetration and different values for the inertia control 

constant and Droop control. 

 

4.4.1. INERTIA CONTROL VALUES 

The inertia control values will be changed to: H= 0; H= 2; H=4; H= 6 and H= 10. 

The droop control will be set at the default value of 5%, this way only the inertia 

will influence the frequency response.  

FREQUENCY RESPONSE 

Area 1: Wind Turbine Area and Area 2: Synchronous Machine 

 

Figure 61 NADIR- 30% Wind Penetration Inertia influcence 
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because it would mean our frequency response, inertia and Droop, were able to 

avoid the frequency of the system to drop to lower values.  

But in this case, it is crucial to also analyze the other graphs of frequency response, 

power injected and rotor speed. And see if this scenario is still the best option.  

 

Figure 62 Frequency Response Area 1- 30% Wind Energy Penetration, Inertia influence 

 

 

Figure 63 Frequency Response Area 2- 30% Wind Energy Penetration, Inertia influence 
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In the two Frequency Response figures, we can see not only the NADIR but also the 

ROCOF and the frequency recovery of the slow primary response and secondary 

response.  

The scenario with constant inertia control of 4 has the lowest Rate of Change of 

Frequency. It takes 2 seconds to achieve NADIR, while the rest of the scenarios 

achieve their lower frequency values faster.  

POWER GENERATED BY THE WIND TURBINE 

 

Figure 64 Power Generated Wind Turbine- 30% Wind Energy Penetration, Inertia influence 

SPEED OF THE WIND TURBINE 

If we take a look both at the speed of the rotor and at the power generated by the 

turbine we will see how the cases H=6 and H=10 are the ones that are more 

unstable. 

They drop very quickly after only two seconds of simulation, while other scenarios 

can provide power during a longer period of time, reaching at the end the same 

power and rotor speed state.  

This is because the inertia constant of the turbine is 5.04 and we are asking for an 

inertial response of 6 and 10 respectively. So the turbine forces itself to provide 

the maximum power possible and we end up with a more unstable and shorter 

frequency response. 
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Figure 65 Rotor Speed Wind Turbine- 30% Wind Energy Penetration 

 

4.4.2. DROOP CONTROL VALUES 

The Droop control values will be changed to: 1%, 2%, 6% and 10%. The inertia 

constant will be set at the default value of 5.04, this way only the Droop will 

influence the frequency response. 

FREQUENCY RESPONSE 

Area 1: Wind Turbine Area and Area 2: Synchronous Machine 

 

Figure 66 NADIR Area 1 and Area 2- 30% Wind Penetration Droop influcence 
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In this case and excluding the zero value which means we don’t have Droop 

Control, it seems the most favorable values for a better frequency response are the 

lower Droop values.  

As explained in the theoretical framework, a Droop control of for example 5% 

means that a 5% change in frequency will result in a 100% change in power 

output.  

 

Figure 67 Frequency Response Area 1- 30% Wind Energy Penetration, Droop influence 

 

Figure 68 Frequency Response Area 2- 30% Wind Energy Penetration, Droop influence 
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The frequency response of the lower values for the Droop control also seem to be 

the better option. Not only was the NADIR higher, now we see how also the ROCOF 

has a lower value.  

 

POWER GENERATED BY THE WIND TURBINE 

 

Figure 69 Power Generated Wind Turbine- 30% Wind Energy Penetration, Droop influence 

 

SPEED OF THE WIND TURBINE 

 

Figure 70 Rotor Speed Wind Turbine- 30% Wind Energy Penetration 
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The power generated by the turbine seem to be more stable for lower Droop 

control values, although the rotor speed decreases much more in this two cases. 

 

4.5. CASE 5: NADIR OF ALL WIND ENERGY PENETRATIONS, FREQUENCY CONTROL 

PARAMETERS INFLUENCE. DEFAULT WIND SPEED=12 m/s 

In order to see if the influence of both parameters, inertia control constant and 

Droop control, is the same for the rest of Wind Energy Penetrations we decided to 

analyze the NADIR: 

4.5.1. INERTIA CONTROL VALUES 

FREQUENCY RESPONSE 

Area 1: Wind Turbine Area and Area 2: Synchronous Machine 

 

Figure 71 NADIR All Penetrations- Area 1, Inertia influence 

 

Figure 72 NADIR All Penetrations- Area 2, Inertia influence 
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4.5.2. DROOP CONTROL VALUES 

FREQUENCY RESPONSE 

Area 1: Wind Turbine Area and Area 2: Synchronous Machine 

 

Figure 73 NADIR All Penetrations- Area 1, Droop influence 

 

Figure 74 NADIR All Penetrations- Area 2, Droop influence 

 

It is proved that the influence of both parameters has the same effect in all the 
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4.6. CASE 6: INFLUENCE OF THE WIND SPEED 

In the theoretical framework we mentioned the wind speed influence in the 

Frequency Response of Wind Turbine.  

Case 6 consists in varying the wind speed input of the Wind Power Plant to analyze 

the influence of this parameter on the results. We chose for this case to work with 

Default Values of Constant of Inertia and Droop Control and a Wind Penetration of 

10%.  

We are going to study 3 different wind speeds: 10 m/s, 15 m/s and 17 m/s. 

To balance the demand with the generation we need to change the parameters 

related to the Power generated by the synchronous machines and the number of 

wind turbines. We decided to change only the Power generated by each turbine: 

Wind speed of 10 m/s:  

N=160; Pref2=0.59; Pref3=0.54; Pref4=0.54 

Wind speed of 15 m/s:  

N=160; Pref2=0.525; Pref3=0.50; Pref4=0.50 

Wind speed of 17 m/s:  

N=160; Pref2=0.515; Pref3=0.50; Pref4=0.50 

 

4.6.1. VELOCIDAD 10 m/s 

 

Figure 75 Power and Speed of the Wind Turbine with 10 m/s wind speed 

In this first scenario we chose to work under the default wind speed of 12 m/s.  

The NADIR value for the Frequency Response Area 1 is 49,6740 Hz being the 

Default case value of 49,68 Hz; which means we are lowering our Frequency 

Response in terms of emulated inertia response. 
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Taking a look at the electrical power generated by the turbine we see how the 

values of the generation are much lower than the ones we had for default wind 

speed 12 m/s that were between 0.6 and 0.7 (pu).  

The same happens for the rotor speed, we are now working at a rotor speed of 1 

(pu), when at the default case we were most of the time working at 1.2 (pu). 

Nevertheless, the behavior is similar, we start with a constant power output, the 

Frequency control detects a drop in the system frequency an demands extra 

generation. We decelerate the machine to emulate inertia and inject that extra 

power to the grid, and we end in a worse power operational point than before.  

This frequency response is only available during the emulated inertia, more or less 

5 seconds; because the turbine is working at an operational point that there is no 

extra energy we can inject just the energy extracted from the emulated inertia. So 

the objective in this case is to not decelerate the machine up to a point that we 

cannot recover fast enough. 

 

4.6.2. VELOCIDAD 15 m/s 

In this second scenario the NADIR value of the Area 1 is 49,6723 Hz, a little bit 

lower than the previous case. 

The power generated by the turbine not only is higher during all the simulation but 

after the emulated inertia we are even in a better power operational state, while 

the rotor speed is changing minimally. 

 

 

Figure 76 Power and Speed of the Wind Turbine with 15 m/s wind speed 
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4.6.3. VELOCIDAD 17 m/s 

The same happens in this third scenario. We are not only able to emulate inertia; 

we can also produce more power than we were producing before the frequency 

drop, which is really positive for the frequency response of the system.   

 

Figure 77 Power and Speed of the Wind Turbine with 17 m/s wind speed 

 

Notice that in the case of 15 m/s and 17 m/s the rotor speed seem to remain 

constant, although there is an emulated inertia response that injects power during 

the fast primary response. This is due to the scale of the graph. The decrease on the 

rotor speed is so low that using the same scale as in the other examples we cannot 

appreciate the change.  

 

Figure 78 Close up of the wind turbine rotor speed wind speed 17 m/s 

 

But as we see in Figure 81, the deceleration exists although is minimum.  

The response to all these behaviors we can find it in the following figure, the 

Turbine Power Characteristics of the DFIG used in the simulation:  
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Figure 79 Turbine Power characteristics and Tracking Characteristics [16] 

 

The power of the DFIG used for the simulation is controlled in order to follow the 

tracking characteristic (red line).  

That tracking characteristic is defined by four points: A, B, C and D, which A 

correspond to the cut in wind speed and C to the rated wind speed. 

So at 0 pitch angle, wind speed of 12 m/s is the rated speed. Below that wind speed 

our operational point will be place somewhere between point B and C.  

For wind speed 10 m/s we will be working at a rotor speed of 1 pu and generating 

power of 0.4 pu. If we decelerate the machine working in this point, the speed and 

the power generated after the emulated inertia will be lower than initial state.  

For the other two wind speeds that are above rated wind speed, 15 m/s and 17 

m/s. We are working at a point in which the wind turbine is spilling away energy 

to generate at rated power. So at these two scenarios the wind turbines have a 

reserve of energy that can use to increase power. They decelerate to emulate 

inertia and at the same time use the pitch control to place their operational point 

at a higher state than the rated power. This allows the turbines to emulate inertia 

and gain power for the slow primary and secondary responses.  
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Figure 80 Pitch angle evolution 17 m/s 

 

At figure 80 we can see how the pitch varies during the simulation due to the 

energy reserve that being above rated speed gives to the turbine. 

 

Figure 81 Pitch Angle evolution 10 m/s 

 

At figure 81, we see the opposite example. No energy reserve, no pitch regulation 

needed. It remains at 0. 
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5. CONCLUSIONS 

From the previous work we can extract the following conclusions: 

 Renewable energy penetration will increase in the upcoming years. In this 

study we proved that the increase in energy penetration into the system 

without a Frequency control can lead to a worse frequency Response. Type 3, 

which are the most used wind turbines, and Type 4, which will be the most 

used technology in the future, cannot provide natural inertia response. By 

increasing the penetration we are lowering the inertia stored in the system. 

This leads to a higher ROCOF values and lower NADIR. Therefore, a Frequency 

control strategy is needed. 

 

 Implementing a Frequency Control in the wind turbines, we observed an 

improvement on the Frequency Response of the system. We proved that the 

control placed at the converter, detects a frequency deviation and controls the 

generator in order to increase power. The generator decelerates so the kinetic 

energy stored in the rotating mass can be injected as electric power into the 

grid providing frequency support. In our case this process is known as 

emulated inertia.  

 

 On the contrary, at the No Frequency Control scenarios the power and the 

rotor speed remain constant which means there is no Frequency response.  

 

 We also proved that the reaction of the machine in front of the frequency drop 

after the control gives the order to decelerate depends on the Frequency 

Control values of inertia control and Droop control and on the Operational 

Point of the turbine: 

 

Frequency control values of inertia and Droop  

Setting the correct values for the Frequency Control parameters is 

crucial to obtain a good Frequency Response. 

For the inertia control constant we saw that high values will lower 

the NADIR, but will not give a continued and stable frequency 

support. This is because the constant of inertia of the turbine was set 

at 5.04, we were asking for higher inertia to a machine that cannot 

provide it. This makes the machine to decelerate faster giving an 

unstable response.  

So we conclude that higher inertia constant is positive only if the 

machine can provide it itself. The best value for the inertia control 
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constant in this case would be the same as the inertia constant of the 

machine, the default value of 5.04. 

 

The Droop control values that resulted into a better frequency 

response are the lower ones. This means that a little deviation in the 

frequency would result in a 100% in generator output power. We 

have to take into account at which deviation we want the machine to 

change the output. We have good results with 1% and 2% but in 

reality the droop is around 3-5%, a bit higher values.   

 

  Operational point  

If we are working at higher wind speeds than the rated wind speed, 

we have a reserve of energy that in normal operation we are losing. If 

there is a frequency drop we can use pitch control to achieve higher 

power production. We saw in this scenario that we can inject energy 

by emulating inertia decelerating minimally the turbine and reach a 

higher power generation point after the frequency drops being able 

to keep the support to the frequency of the system. 

But wind is not a constant resource. So we can have wind speeds at 

rated speed, over rated speed or under the rated speed. As seen in 

the last scenario, the power characteristic curve will gives us the 

operational points depending on the wind speed and the speed of the 

rotor so we can have a hint of the behavior of the machine at any 

point. 

For lower wind speeds, we saw that initially the machine was 

operating at lower power point and lower rotor speed then the 

default case. When the frequency drop at the 30 second mark the 

turbine provides emulated inertia and ends up in an even lower 

power generation and lower speed operational point. The frequency 

response in these cases will last only the few seconds that 

correspond only to the emulated inertia response. 

At rated wind speed, we saw that the operational point after the 

emulated inertia remain almost the same.  

 

 We conclude that Frequency Controls are crucial to the stability of the future 

power systems. Renewable energy technologies should be able to adapt to 

power system requirements so stability and security of supply can be provided 

to the final consumers.   
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6. FURTHER STUDIES 

After finishing the project there are some lines of study that are still open and 

would be interesting for further studies: 

 The oscillations seen in Area 1 can be reduced by adding a new control. This 

way we could analyze if the results are affected or not by these oscillations. 

 

 It would be also interesting to implement a control for overspeeding and see 

how the Frequency Response of the system varies from our study.   

 

 Increase the level of difficulty of this project by taking into account each and 

every wind turbine. We studied the Wind Power Plant as a unique turbine 

generating the total Power, which is a simplified way to study the behavior of 

the system. We could instead, implement a control that takes into account the 

wind speed and generating operational point of each wind turbine. So in case 

of a Frequency drop we are able to know which turbines can produce more 

power or which ones already are at their maximum capability.   
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